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relativistic electron beam in a metal waveguide, filled with a 
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P N Lebedev Physical Institute, Academy of Sciences of the USSR, Moscow, USSR 

Received 2 August 1974 

Abstract. The problem of nonlinear interaction of a relativistic electron beam with a 
bounded dielectric medium, which fills the metal waveguide is considered. General formulae 
for the frequency spectra and growth rates of the beam-excited electromagnetic waves as 
well as the expression for the threshold-wave amplitudes in the nonlinear stage of generation 
are obtained. The electromagnetic radiation energy flow and the efficiency of generation 
for values close to the threshold saturation are calculated. 

1. Introduction 

A large number of papers, dedicated to the investigation of the nonlinear collective 
interaction of relativistic electron beams with plasmas, have recently been published. 
A review of these investigations, of which a major part is concerned with space unbound 
beam-plasma systems, has been given lately (Dolgenko et al 1974). In this review the 
problem of the electromagnetic wave excitation upon relativistic electron beam action 
in an unbound dielectric medium with a permittivity c,,(w) was solved. The real system 
however, in which electron beams are used for the generation of coherent microwave 
radiation, is seen to be space limited. This is the reason why a consistent nonlinear 
theory of electron beam interaction with a bounded dielectric medium is of interest 
and its development is the purpose of this paper. 

It must be noted that the linear theory of electromagnetic wave excitation in bounded 
beam-plasma systems is fully developed (Aranov et a1 1974). As far as nonlinear theory 
is concerned, a single paper is known (Tchogovadze 1973). In this paper the interaction 
of the relativistic beam with the longitudinal (potential) wave of a finite amplitude in a 
plasma cylinder, bounded by a metal waveguide, is studied. Further, the results from 
this paper (Tchogovadze 1973) can be obtained from the more general formulae about 
the arbitrary dielectric medium (with c0(w)), filling a waveguide. 

The electromagnetic wave in a guide is a travelling wave only along the guide axis, 
whereas it has a complex structure radially, the structure being similar to a non- 
homogeneous standing wave. When such a wave with a finite amplitude interacts 
with an electron beam, the radial-averaged Miller’s force (Gaponov and Miller 1958, 
Gorbunov 1973) must be kept in mind and this force predetermines that the beam must 
move radially. The action of this force will be further neglected, since it is assumed that 
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there is a constant magnetic field Bo along the axis and this field is sufficiently strong to 
meet the condition 

Re >> (1.1) 

where Re = eBo/mc is the cyclotron frequency of the electrons in the field Bo and 
wB = 4ne2no/m is Langmuir's frequency of beam-electrons with density in the laboratory 
coordinate system. 

In such a magnetic field the transverse motion of beam electrons (radial and azi- 
muthal) can be fully neglected. As far as the longitudinal motion is concerned, the 
velocity, of which in the absence of electromagnetic waves is equal to U = (O,O, U ) ,  

this motion is changed by the effect of the wave field. Since our interest lies in the beam- 
excited electromagnetic waves, for which the resonance condition of radiation must 
hold (w = k,u), even a small deviation from the longitudinal electron velocity may 
cause a great change in the character of the wave propagation in the system under 
consideration. 

Thus the nonlinear action of the excited electromagnetic wave is taken into account 
only for the longitudinal motion of the beam electrons. The dielectric medium is con- 
sidered to be linear and is described by the tensor of the dielectric permittivity: 

fl(d 0 0 

(1.2) 1 : #P, cll;wJ. E O i j  = 

Two possible cases are studied. 
(i) An isotropic dielectric medium, for which cL = c I l  = co(w) (this is the case, for 

instance, with a plasma in the frequency range w >> Re,  the permittivity being 
Eo = 1 - (wt /02 ) ,  where wp is Langmuir's plasma electron frequency). 

= c0(w) (this case is 
realized in a strong magnetized plasma in the frequency range w < Re and when the 
condition wp << Re is satisfied). 

The beam electron motion can be described using the equation of relativistic hydro- 
dynamics (Lovetskii and Rukhadze 1965) 

(ii) A single-axis anisotropic dielectric with cl = 1 and 

an 
-+div no = 0 
at 

where n is the density and v the velocity of the beam electrons. The electric and magnetic 
fields are determined by the self-consistent system of Maxwell's equations : 

div 9 = 4ne(n - no), 1 BB 
curlE = ---, 

c at 

1 a 9  4n 
curl B = - -++e(nv-n,u), div B = 0. 

c at c 

Here po = en, andj, = enOu are the unperturbed charge density and the beam-current 
density, respectively and gi = zo i , (o )E j ,  which characterizes the electrodynamic pro- 
perties of the dielectric medium, filling the metal guide, with a radius R. 
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The equations (1.3) and (1.4) with the boundary conditions on the metal-guide 

(1.5) 

represent a complete system of equations for the problem under consideration, namely, 
the nonlinear electromagnetic wave excitation by an electron beam in a dielectric 
medium bounded by a metal guide. 

surface 

Ezlr=R = EPlr=R = 0 

2. Linear theory of electromagnetic wave excitation in the system considered 

Before undertaking the analysis of the nonlinear problem, we shall give here the basic 
results of the linear theory of electromagnetic wave excitation by a relativistic electron 
beam in the system under consideration. If the equations (1.3) and (1.4) are linearized 
and if time and position dependences for non-equilibrium quantities are assumed in 
the form 

f ( r )  exp( - iwt + ilq + ik,z), (2.1) 

the permittivity tensor of a system, consisting of a dielectric medium and a magnetized 
electron beam, is found : 

E . .  1J = (2.2) 
0 0 € 3  

where 

for the case of an isotropic medium and 

for an anisotropic single-axis dielectric, and further y = [l - (u2 /c2 ) ] -  l i 2 .  

components B,  and E ,  ( B  and E waves, respectively) 
Using the tensor (2.2) the field equations can be reduced to two equations for the 

A,B, - K ~ B ,  = 0, (2 .5~)  

A I E , - F ~  € 3  2 E ,  = 0 

where 

The boundary conditions (1.5) for these equations take the form 

(2.5b) 
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The boundary-value problems thus formulated have the following solution 

B, = B,oJf(ixr) E ,  = EzoJl( i( :x2) ”.), 

while the eigenvalues spectrum w is found from the dispersion equations 

(2.7) 

(2.8a) 

(2.8b) 

where pSl  and /.ill are the roots of a Bessel function and its derivative (JI(ps1) = 0, 

Now, knowing E ,  and B, the other components of the electric and magnetic fields 
JXP2 = 0). 

of the wave are easily found : 

It follows from (2.8a) that the B wave is always stable; the beam does not interact 
with this wave. This is the reason why it is further postulated that B, = 0. With respect 
to the E wave, which is described by (2.8b), it is excited by the beam and further the beam 
interacts with the wave. Here 

(2.10) 

where wo is the frequency of the wave excited by a beam and 6 characterizes the growth 
rate. 

In the case of an isotropic dielectric medium, the excitation of both the almost- 
longitudinal (potential) and the almost-transverse electromagnetic waves is possible. 
In the frequency range, in which c 0 ( u )  < 1 ,  the almost-longitudinal waves are excited 
by the beam and the spectrum of these waves is determined by the equation 

o = wo + is = k,u + id, 

ro(w0) = 0 (2.11) 

and the growth rate is given by the expression : 

(2.12) 

In the frequency range, in which co(w0) > 1 ,  the almost-transverse electromagnetic 
waves are excited by the beam and the waves are in the frequency spectrum 

(2.13) 
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the growth rate being 

(2.14) 

It follows from the formulae (2.1 1)-(2.14), that when the almost-longitudinal wave 
is excited by the beam in an isotropic dielectric medium, the fundamental axial sym- 
metrical mode with s = 0 and 1 = 0 (poo = 2.4) has a maximum growth rate. As far 
as the transverse electromagnetic wave is concerned, the problem is more complicated. 
At tO(w) = constant the growth rate increases, when the number of modes is increased, 
as p:/3. In practice, such is the increase in the rate with the number of modes at an 
arbitrary ro(oo) > 1. That is why, if no special steps are taken, the excitation of the 
transverse wave must be non-coherent and multimode in character. But if the beam is 
slightly modulated in advance one mode generation is always possible (Fainberg 1968). 

Now let us consider the wave excitation in the case of an anisotropic single-axis 
dielectric. I t  can easily be shown that in this case the electromagnetic wave excitation 
is possible only in the frequency range, for which co(wo) < 0. The frequency spectrum 
of oscillations is determined by the equation 

(2.15) 

and the growth rate is 

When the electron beam is non-relativistic, that is y -, 1, the phase velocity of the 
waves considered is smaller than the light velocity and the wave field proves to be a 
potential field and this holds with a high enough precision. 

From formulae (2.15) and (2.16) for strongly magnetized plasma c o ( o )  = 1 - ( w ; / 0 2 )  
it follows, that an excitation of the oscillation is possible only provided that 

(Aronov et al 1974). This is the reason why if the plasma density lies within the range 

(2.17) 

the beam will excite one axial symmetrical mode with poo = 2.4. 
In conclusion it should be noted that the instability considered above leads to an 

excitation of a wave, for which E ,  # 0, and that is why the work of the field upon the 
electron beam is nonzero, E . u  # 0. Therefore the wave excitation must be accom- 
panied by a beam deceleration, which in turn invalidates the resonance condition 
wo = k,u and the instability becomes stable. 

3. Nonlinear saturation of a beam-excited electromagnetic wave in a dielectric 

I t  has been proved above that the small amplitude electromagnetic waves, described 
by the linear theory, in the system under consideration are unstable ; the amplitude of 
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these waves increases with time upon the action of the beam. At a sufficiently large 
amplitude, however, the instability must tend to saturation. As noted elsewhere 
(Dolgenko et al 1974) the waves for sufficiently large amplitudes, being capable of 
breaking the resonance condition, cannot increase in amplitude and they become 
stationary. Let us calculate the threshold amplitude ; above this threshold amplitude 
the beam-excited wave is stationary. 

The electromagnetic wave will be considered as stationary and a variable 
= t-(k,/w)Z will be introduced. All quantities are dependent only on this variable 

(in addition to the dependences on r and cp). For the case of a magnetized beam, when 
the electron motion is one-dimensional, the following integrals in the equations (1.3) are 
found (Dolgenko er a1 1974) : 

n = no-, 
k,u - w 
k,v, - 

where 

The function 4 is connected with E ,  in the following way: 

All other components of the electric and magnetic fields E, and B, can be found from 
the equations (2.9) (taking into account that B, = 0). 

Using (3.1) and Maxwell's equations a nonlinear equation for 4 is obtained, 

for the case of an isotropic dielectric and 

for the case of an anisotropic single-axis dielectric. Here 

o2 w2 
tc2 = k;-c0(w)-;;r and U; = k t - 3 .  

c 

From (1.5) the boundary condition for the function 4 is found: 

4l ,=R = 0. (3.5) 
Taking into account that the nonlinear terms in the equations (3.3) and (3.4) are 

small and proportional to the beam density, the Bogoliubov-Krylov method (Kovtun 
and Rukhadze 1970) for solving these equations can be used. The boundary condition 
(3.5) and the results from the linear theory, obtained in 5 2, suggest that the solution of 
equations (3.3) and (3.4) must be looked for in the following form: 
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where $ = wt .  In this way, the beam-excited wave is assumed to be one-modal with 
fixed s and 1. Thus the time and position dependences of fields are predetermined and 
only the amplitude 4sr has to be obtained. 

Further, the analysis will be confined to the nonlinear saturation of the fundamental 
axial symmetrical mode with s = 1 = 0 (ie poo = 2.4). As already shown, when the 
almost-longitudinal wave (when zo (o )  < 1) is excited by the beam, it is this mode that 
has the maximum growth rate. In the case of a transverse electromagnetic wave (at 
c0(w) > l), the favoured increase in this mode can be ensured by a preliminary modula- 
tion of the electron beam. 

We shall begin the analysis with the case of an isotropic dielectric medium, in which 
the electron-beam excited waves are described by the equation, (3.3). Substituting the 
solution (3.6) for the axial symmetrical modes (s = 1 = 0) in this equation and averaging 
on $ the following equation for a longitudinal wave (eO(w) < 1) is obtained : 

where k2 = pio/R2 + k;, K ( V ~ , ~ )  and E ( q 1 , 2 )  are elliptic functions, 

and 

The upper expression on the right-hand side of equation (3.7) holds if 

and the lower expression holds if the inequality sign is reversed. 

described in 9 2, follows from equation (3.7). For large amplitudes, when 
At small field amplitudes, when q ,  << 1, the dispersion equation of the linear theory, 

the quantity q 2  in the entire range of variation of r < R is in practice close to 1/J2. 
Taking into consideration this finding, from equation (3.7), by integrating on r ,  we obtain 

4 0 0  

where 

k: = 
R Pi0 ~2+7 m i  and S(R) = lo J,’/’($r)rdr. 

(3.9) 
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Now, considering that for longitudinal waves excited by the beam 

E o ( 4  = € o ( q J  + isaco(oo)/aoo 3 

where wo is the frequency spectrum (2.1 1) and 6 is the growth rate (2.12), from (3.9) the 
threshold amplitude of a stationary longitudinal wave is finally obtained : 

(3.10) 

Similarly the stationary amplitude of a transverse electromagnetic wave, excited by the 
beam in an isotropic dielectric guide for which zo(wo) > 1, is found: 

) 2‘3. (3.11) 

The quantities wo and 6 are thus determined by the relations (2.13) and (2.14). 
Finally in case (ii) of an anisotropic dielectric, where the electron beam excites a 

wave with the spectrum (2.15) and (2.16), the threshold amplitude of a nonlinear wave is 
as follows : 

e400 = ~ S ( R ) 4  ) .  (3.12) 

3c2S( R ) o i  
5R4J ~ ( ~ o o ) ~ o ( w o ) ( d / a O o ) ~ ~ ( O o ) W ~  

my%u2 ( 5 R 4 J ~  ( ~ o ~ ) f o ( ~ o ) ~ ~ ~ ( a ~ o ( ~ o ) / d o , )  + (2PioU2/ooR2)y2(y2 - 111 

4. Electromagnetic radiation flow near the the threshold of wave saturation 

Now knowing the stationary amplitudes of electron-beam excited waves in a bounded 
dielectric medium, it is not difficult to calculate the vector of the electromagnetic radia- 
tion flow (Poynting’s vector) and the conversion efficiency of the beam energy into 
energy of beam-excited radiation. In the case considered (excitation of an axial sym- 
metrical mode), only the longitudinal component of period-averaged Poynting’s vector 
is nonzero : 

dqE,B, = qnmc2(y - 1)unR2, (4.1 ) 

where q is the conversion efficiency of the kinetic energy flow of the beam into an electro- 
magnetic radiation flow and the bar above E,B, denotes time averaging. Further, the 
details of the calculation of the integral (4.1), which can be obtained easily using equations 
(2.9), (3.2) and (3.10)-(3.12), are omitted and only the final results for q are given. 

In the case of an isotropic dielectric with c o ( o 0 )  < 1 (for instance, a plasma), when 
only the almost-longitudinal (potential) electromagnetic waves are excited by the 
electron beam, the following expression for the efficiency is obtained : 

When cO(o)  > 1 and the almost-transverse electromagnetic wave is excited by the beam, 
the expression 

(4.3) 

is obtained. 
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Finally, when an anisotropic single-axis waveguide is considered and the beam- 
excited wave is longitudinal-transverse, the expression 

is obtained for 9. 
It follows from the equations (4.2H4.4) that the conversion efficiency of the kinetic 

energy into an electromagnetic radiation flow, where an almost-longitudinal wave is 
excited, increases with the density as n;I3 but when an almost-transverse wave is excited, 
i t  increases as nhi3. At a small beam density the efficiency of an almost-transverse wave 
generation is much larger than the efficiency of the longitudinal-wave generation. 
Further, it is very important to notice that in an ultra-relativistic case ( y  >> 1) with the 
increase in the beam electron energy, the efficiency of electromagnetic wave generation 
in an anisotropic dielectric medium (for example in a magnetized plasma) is most 
quickly increased as 1 / 7 i 3 .  A simple evaluation shows that in the centimetre microwave 
range the efficiency of generation can be 10-20 %. 
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